MEM6804 Modeling and Simulation for Logistics \＆Supply Chain物流与供应链建模与仿真

Theory Analysis

Lecture 9：Output Analysis II：Comparison

SHEN Haihui 沈海辉

Sino－US Global Logistics Institute
Shanghai Jiao Tong University
ㅅ shenhaihui．github．io／teaching／mem6804f
－shenhaihui＠sjtu．edu．cn

Spring 2021 （full－time）

Contents

(1) Introduction
(2) Comparison of Two Designs

- Significant Difference
- Independent Sampling
- Common Random Numbers
(3) Comparison of Multiple Designs
- Bechhofer's Procedure
- Paulson's Procedure
- Ranking and Selection Review
- Multi-Arm Bandit Problem

(1) Introduction

(2) Comparison of Two Designs

- Significant Difference
- Independent Sampling
- Common Random Numbers
(3) Comparison of Multiple Designs
- Bechhofer's Procedure
- Paulson's Procedure
- Ranking and Selection Review
- Multi-Arm Bandit Problem

Introduction

- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.

Introduction

- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.
- Here, different simulation models may refer to different designs, operation policies, etc., of a simulated system; in this lecture we simply call them different (system) designs.

Introduction

- We have learnt how to estimate the absolute performance of a simulation model.
- We now discuss how to compare two or more simulation models, i.e. to estimate their relative performance.
- Here, different simulation models may refer to different designs, operation policies, etc., of a simulated system; in this lecture we simply call them different (system) designs.
- It is one of the most important uses of simulation.

Introduction

- Key Question: Are the observed differences due to
- the actual differences on the expected performance of system designs?
- or the random errors in the simulation outputs?

Introduction

- Key Question: Are the observed differences due to
- the actual differences on the expected performance of system designs?
- or the random errors in the simulation outputs?
- The comparison can be classified into two types:
- Two system designs: using confidence interval of the difference.
- Multiple (more than two) system designs: selection of the best.

2 Comparison of Two Designs

- Significant Difference
- Independent Sampling
- Common Random Numbers
(3) Comparison of Multiple Designs
- Bechhofer's Procedure
- Paulson's Procedure
- Ranking and Selection Review
- Multi-Arm Bandit Problem

Comparison of Two Designs

- Let θ_{1} and θ_{2} be the mean performance of the two system designs in simulation.
- To compare θ_{1} and θ_{2}, we simply construct the point and interval estimates of $\theta_{1}-\theta_{2}$

Comparison of Two Designs

- Let θ_{1} and θ_{2} be the mean performance of the two system designs in simulation.
- To compare θ_{1} and θ_{2}, we simply construct the point and interval estimates of $\theta_{1}-\theta_{2}$
- Suppose we have the simulation output data from simulation of two system designs. ${ }^{\dagger}$

	Replication					Sample System								
	1	2	\cdots	R_{i}	Sample									
Variance							$	$	Y_{11}					
:---:	:---:	:---:	:---:	:---:	:---:									
1	Y_{11}	Y_{21}	\cdots	$Y_{R_{1} 1}$	\bar{Y}_{1}									
Y_{12}	Y_{22}	\cdots	$Y_{R_{2} 2}$	\bar{Y}_{2}	S_{2}^{2}									

[^0]
Comparison of Two Designs

- Let θ_{1} and θ_{2} be the mean performance of the two system designs in simulation.
- To compare θ_{1} and θ_{2}, we simply construct the point and interval estimates of $\theta_{1}-\theta_{2}$
- Suppose we have the simulation output data from simulation of two system designs. ${ }^{\dagger}$

System	Replication				Sample Mean	Sample Variance
	1	2	\cdots	R_{i}		
1	Y_{11}	Y_{21}	\cdots	$Y_{R_{1} 1}$	\bar{Y}_{1}	S_{1}^{2}
2	Y_{12}	Y_{22}	\ldots	$Y_{R_{2} 2}$	\bar{Y}_{2}	S_{2}^{2}

- Point estimator of $\theta_{1}-\theta_{2}: \bar{Y}_{1}-\bar{Y}_{2}$.

[^1]
Comparison of Two Designs

- Let θ_{1} and θ_{2} be the mean performance of the two system designs in simulation.
- To compare θ_{1} and θ_{2}, we simply construct the point and interval estimates of $\theta_{1}-\theta_{2}$
- Suppose we have the simulation output data from simulation of two system designs. ${ }^{\dagger}$

	Replication					$\begin{array}{c}\text { Sample } \\ \text { System }\end{array}$
	1	2	\cdots	R_{i}	Sample	
Variance						

- Point estimator of $\theta_{1}-\theta_{2}: \bar{Y}_{1}-\bar{Y}_{2}$.
- Approximate $1-\alpha \mathrm{Cl}: \bar{Y}_{1}-\bar{Y}_{2} \pm t_{v, 1-\alpha / 2} \times$ s.e. $\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$.
- s.e. $\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$ is the estimator of standard error of $\bar{Y}_{1}-\bar{Y}_{2}$; see more details about this quantity and v later.

[^2]
Comparison of Two Designs

- Case 1 - Strong evidence that $\theta_{1}<\theta_{2}$:

Comparison of Two Designs

- Case 1 - Strong evidence that $\theta_{1}<\theta_{2}$:

- Case 2 - Strong evidence that $\theta_{1}>\theta_{2}$:

Comparison of Two Designs

- Case 1 - Strong evidence that $\theta_{1}<\theta_{2}$:

- Case 2 - Strong evidence that $\theta_{1}>\theta_{2}$:

- Case 3 - No strong evidence that one is larger than the other:

- It does not imply $\theta_{1}=\theta_{2}$!

Comparison of Two Designs

- The first two cases are conclusive.
- If in case 3, then we increase the number of replications R_{1} and/or R_{2}, after which the Cl would likely shift, and definitely shrink in length.

Comparison of Two Designs

- The first two cases are conclusive.
- If in case 3, then we increase the number of replications R_{1} and/or R_{2}, after which the CI would likely shift, and definitely shrink in length.
- We will shrink the Cl until case 1 or 2 is achieved, or the confidence interval is so narrow, which suggests that we do not need to separate them.

Comparison of Two Designs

－Significant Difference

－For the comparison of performance of two designs，there is an important distinction between

- statistically significant difference（统计意义上的显著区别）；
- practically significant difference（实际意义上的显著区别）．

Comparison of Two Designs

－For the comparison of performance of two designs，there is an important distinction between

- statistically significant difference（统计意义上的显著区别）；
- practically significant difference（实际意义上的显著区别）．
－Statistical significance answers the following questions：
－Is the observed difference $\bar{Y}_{1}-\bar{Y}_{2}$ larger than its variability？
－Have we collected enough data to be confident that the observed difference is real（not just by chance）？
－For the comparison of performance of two designs，there is an important distinction between
- statistically significant difference（统计意义上的显著区别）；
- practically significant difference（实际意义上的显著区别）．
－Statistical significance answers the following questions：
－Is the observed difference $\bar{Y}_{1}-\bar{Y}_{2}$ larger than its variability？
－Have we collected enough data to be confident that the observed difference is real（not just by chance）？
－Practical significance answers the following question：
－Is the true difference $\left|\theta_{1}-\theta_{2}\right|$ large enough so it is worthwhile to separate them？

Comparison of Two Designs

- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.

Comparison of Two Designs

- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.
- In case 1 , we may reach the conclusion that $\theta_{1}<\theta_{2}$ and decide that design 2 is better (suppose larger is better).
- However, if the actual difference $\left|\theta_{1}-\theta_{2}\right|$ is very small, then it might not be worth the cost to replace design 1 with design 2 .
- Cases 1 and 2 imply a statistically significant difference, while case 3 does not.
- In case 1 , we may reach the conclusion that $\theta_{1}<\theta_{2}$ and decide that design 2 is better (suppose larger is better).
- However, if the actual difference $\left|\theta_{1}-\theta_{2}\right|$ is very small, then it might not be worth the cost to replace design 1 with design 2 .
- Confidence intervals do not answer the question of practical significance directly.
- Instead, they bound, with probability $1-\alpha$, the true difference $\theta_{1}-\theta_{2}$ within the range $\bar{Y}_{1}-\bar{Y}_{2} \pm t_{v, 1-\alpha / 2} \times$ s.e. $\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$.
- Whether a difference within these bounds is practically significant depends on the particular problem.

Comparison of Two Designs

- Independent sampling means that different random number streams are used to simulate the two systems.
- All the observations of system $1\left\{Y_{r 1}: r=1, \ldots, R_{1}\right\}$ are statistically independent of all the observations of system 2 $\left\{Y_{r 2}: r=1, \ldots, R_{2}\right\}$.

Comparison of Two Designs

- Independent sampling means that different random number streams are used to simulate the two systems.
- All the observations of system $1\left\{Y_{r 1}: r=1, \ldots, R_{1}\right\}$ are statistically independent of all the observations of system 2 $\left\{Y_{r 2}: r=1, \ldots, R_{2}\right\}$.
- Suppose $\operatorname{Var}\left(Y_{r 1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(Y_{r 2}\right)=\sigma_{2}^{2}$. Due to the independence,

$$
\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}} .
$$

Comparison of Two Designs

- Independent sampling means that different random number streams are used to simulate the two systems.
- All the observations of system $1\left\{Y_{r 1}: r=1, \ldots, R_{1}\right\}$ are statistically independent of all the observations of system 2

$$
\left\{Y_{r 2}: r=1, \ldots, R_{2}\right\} .
$$

- Suppose $\operatorname{Var}\left(Y_{r 1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(Y_{r 2}\right)=\sigma_{2}^{2}$. Due to the independence,

$$
\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}} .
$$

- Standard error of $\bar{Y}_{1}-\bar{Y}_{2}$ is $\sqrt{\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}}}$.

Comparison of Two Designs

- Independent sampling means that different random number streams are used to simulate the two systems.
- All the observations of system $1\left\{Y_{r 1}: r=1, \ldots, R_{1}\right\}$ are statistically independent of all the observations of system 2

$$
\left\{Y_{r 2}: r=1, \ldots, R_{2}\right\} .
$$

- Suppose $\operatorname{Var}\left(Y_{r 1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(Y_{r 2}\right)=\sigma_{2}^{2}$. Due to the independence,

$$
\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}} .
$$

- Standard error of $\bar{Y}_{1}-\bar{Y}_{2}$ is $\sqrt{\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}}}$.
- σ_{i}^{2} is estimated via sample variance

$$
S_{i}^{2}=\frac{1}{R_{i}-1} \sum_{r=1}^{R_{i}}\left(Y_{r i}-\bar{Y}_{i}\right)^{2} .
$$

Comparison of Two Designs

- Independent sampling means that different random number streams are used to simulate the two systems.
- All the observations of system $1\left\{Y_{r 1}: r=1, \ldots, R_{1}\right\}$ are statistically independent of all the observations of system 2

$$
\left\{Y_{r 2}: r=1, \ldots, R_{2}\right\} .
$$

- Suppose $\operatorname{Var}\left(Y_{r 1}\right)=\sigma_{1}^{2}$ and $\operatorname{Var}\left(Y_{r 2}\right)=\sigma_{2}^{2}$. Due to the independence,

$$
\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}} .
$$

- Standard error of $\bar{Y}_{1}-\bar{Y}_{2}$ is $\sqrt{\frac{\sigma_{1}^{2}}{R_{1}}+\frac{\sigma_{2}^{2}}{R_{2}}}$.
- σ_{i}^{2} is estimated via sample variance

$$
S_{i}^{2}=\frac{1}{R_{i}-1} \sum_{r=1}^{R_{i}}\left(Y_{r i}-\bar{Y}_{i}\right)^{2} .
$$

- Standard error of $\bar{Y}_{1}-\bar{Y}_{2}$ is estimated via

$$
\begin{equation*}
\text { s.e. }\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\sqrt{\frac{S_{1}^{2}}{R_{1}}+\frac{S_{2}^{2}}{R_{2}}} \tag{1}
\end{equation*}
$$

Comparison of Two Designs

- Independent Sampling

- The $1-\alpha \mathrm{Cl}$ is approximated by

$$
\begin{equation*}
\bar{Y}_{1}-\bar{Y}_{2} \pm t_{v, 1-\alpha / 2} \times \text { s.e. }\left(\bar{Y}_{1}-\bar{Y}_{2}\right) . \tag{2}
\end{equation*}
$$

where s.e. $\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$ is given in (1), and the degree of freedom v is

$$
v=\frac{\left[S_{1}^{2} / R_{1}+S_{2}^{2} / R_{2}\right]^{2}}{\left[S_{1}^{2} / R_{1}\right]^{2} /\left(R_{1}-1\right)+\left[S_{2}^{2} / R_{2}\right]^{2} /\left(R_{2}-1\right)} .
$$

Comparison of Two Designs

- Independent Sampling

- The $1-\alpha \mathrm{Cl}$ is approximated by

$$
\begin{equation*}
\bar{Y}_{1}-\bar{Y}_{2} \pm t_{v, 1-\alpha / 2} \times \text { s.e. }\left(\bar{Y}_{1}-\bar{Y}_{2}\right) . \tag{2}
\end{equation*}
$$

where s.e. $\left(\bar{Y}_{1}-\bar{Y}_{2}\right)$ is given in (1), and the degree of freedom v is

$$
v=\frac{\left[S_{1}^{2} / R_{1}+S_{2}^{2} / R_{2}\right]^{2}}{\left[S_{1}^{2} / R_{1}\right]^{2} /\left(R_{1}-1\right)+\left[S_{2}^{2} / R_{2}\right]^{2} /\left(R_{2}-1\right)} .
$$

- The approximated $\mathrm{Cl}(2)$ is called the Welch confidence interval (Welch 1938).
- Sometimes, people will round v to integer for convenience.

Comparison of Two Designs

- If $R_{1}=R_{2}=R$, or we are willing to discard some observations from the system design on which we actually have more data, we can pair $Y_{r 1}$ with $Y_{r 2}$ to define $Z_{r}=Y_{r 1}-Y_{r 2}$, for $r=1, \ldots, R$.

Comparison of Two Designs

- If $R_{1}=R_{2}=R$, or we are willing to discard some observations from the system design on which we actually have more data, we can pair $Y_{r 1}$ with $Y_{r 2}$ to define $Z_{r}=Y_{r 1}-Y_{r 2}$, for $r=1, \ldots, R$.
- Point estimator of $\theta_{1}-\theta_{2}: \bar{Z}=\frac{1}{R} \sum_{r=1}^{R} Z_{r}=\bar{Y}_{1}-\bar{Y}_{2}$.

$$
\begin{align*}
\operatorname{Var}(\bar{Z}) & =\frac{\operatorname{Var}\left(Z_{r}\right)}{R}=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} \\
& =\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} . \tag{3}
\end{align*}
$$

- If $R_{1}=R_{2}=R$, or we are willing to discard some observations from the system design on which we actually have more data, we can pair $Y_{r 1}$ with $Y_{r 2}$ to define $Z_{r}=Y_{r 1}-Y_{r 2}$, for $r=1, \ldots, R$.
- Point estimator of $\theta_{1}-\theta_{2}: \bar{Z}=\frac{1}{R} \sum_{r=1}^{R} Z_{r}=\bar{Y}_{1}-\bar{Y}_{2}$.

$$
\begin{align*}
\operatorname{Var}(\bar{Z}) & =\frac{\operatorname{Var}\left(Z_{r}\right)}{R}=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} \\
& =\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} . \tag{3}
\end{align*}
$$

- To estimate $\operatorname{Var}\left(Z_{r}\right)$, instead of estimating σ_{1}^{2} and σ_{2}^{2} separately, we can directly use

$$
\begin{equation*}
S^{2}=\frac{1}{R-1} \sum_{r=1}^{R}\left(Z_{r}-\bar{Z}\right)^{2} . \tag{4}
\end{equation*}
$$

- If $R_{1}=R_{2}=R$, or we are willing to discard some observations from the system design on which we actually have more data, we can pair $Y_{r 1}$ with $Y_{r 2}$ to define $Z_{r}=Y_{r 1}-Y_{r 2}$, for $r=1, \ldots, R$.
- Point estimator of $\theta_{1}-\theta_{2}: \bar{Z}=\frac{1}{R} \sum_{r=1}^{R} Z_{r}=\bar{Y}_{1}-\bar{Y}_{2}$.

$$
\begin{align*}
\operatorname{Var}(\bar{Z}) & =\frac{\operatorname{Var}\left(Z_{r}\right)}{R}=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} \\
& =\operatorname{Var}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)=\operatorname{Var}\left(\bar{Y}_{1}\right)+\operatorname{Var}\left(\bar{Y}_{2}\right)=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}}{R} . \tag{3}
\end{align*}
$$

- To estimate $\operatorname{Var}\left(Z_{r}\right)$, instead of estimating σ_{1}^{2} and σ_{2}^{2} separately, we can directly use

$$
\begin{equation*}
S^{2}=\frac{1}{R-1} \sum_{r=1}^{R}\left(Z_{r}-\bar{Z}\right)^{2} \tag{4}
\end{equation*}
$$

- Approximate $1-\alpha \mathrm{Cl}$:

$$
\begin{equation*}
\bar{Z} \pm t_{R-1,1-\alpha / 2} \frac{S}{\sqrt{R}} \tag{5}
\end{equation*}
$$

Comparison of Two Designs

- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
- For each replication r, the two estimates, $Y_{r 1}$ and $Y_{r 2}$, are correlated.
- In this case, R_{1} and R_{2} must be equal, say, $R_{1}=R_{2}=R$.

Comparison of Two Designs

- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
- For each replication r, the two estimates, $Y_{r 1}$ and $Y_{r 2}$, are correlated.
- In this case, R_{1} and R_{2} must be equal, say, $R_{1}=R_{2}=R$.
- The purpose of using CRN is to induce a positive correlation between $Y_{r 1}$ and $Y_{r 2}$ for each r and thus to achieve a variance reduction in the point estimator of $\theta_{1}-\theta_{2}, \bar{Z}$.

$$
\begin{equation*}
\operatorname{Var}(\bar{Z})=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho_{12} \sigma_{1} \sigma_{2}}{R} . \tag{6}
\end{equation*}
$$

Comparison of Two Designs

- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
- For each replication r, the two estimates, $Y_{r 1}$ and $Y_{r 2}$, are correlated.
- In this case, R_{1} and R_{2} must be equal, say, $R_{1}=R_{2}=R$.
- The purpose of using CRN is to induce a positive correlation between $Y_{r 1}$ and $Y_{r 2}$ for each r and thus to achieve a variance reduction in the point estimator of $\theta_{1}-\theta_{2}, \bar{Z}$.

$$
\begin{equation*}
\operatorname{Var}(\bar{Z})=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho_{12} \sigma_{1} \sigma_{2}}{R} . \tag{6}
\end{equation*}
$$

- $\operatorname{Var}(\bar{Z})$ in (6) is smaller than that in $(3) \Longrightarrow$ higher precision of point estimator.
- Common Random Numbers (CRN, also known as correlated sampling): For each replication, the same random numbers are used to simulate both systems.
- For each replication r, the two estimates, $Y_{r 1}$ and $Y_{r 2}$, are correlated.
- In this case, R_{1} and R_{2} must be equal, say, $R_{1}=R_{2}=R$.
- The purpose of using CRN is to induce a positive correlation between $Y_{r 1}$ and $Y_{r 2}$ for each r and thus to achieve a variance reduction in the point estimator of $\theta_{1}-\theta_{2}, \bar{Z}$.

$$
\begin{equation*}
\operatorname{Var}(\bar{Z})=\frac{\operatorname{Var}\left(Y_{r 1}-Y_{r 2}\right)}{R}=\frac{\sigma_{1}^{2}+\sigma_{2}^{2}-2 \rho_{12} \sigma_{1} \sigma_{2}}{R} . \tag{6}
\end{equation*}
$$

- $\operatorname{Var}(\bar{Z})$ in (6) is smaller than that in $(3) \Longrightarrow$ higher precision of point estimator.
- Cl is still computed via (4) and (5), but the width will be smaller \Longrightarrow higher precision.
- It is never enough to simply use the same seed for the random-number generator(s):
- The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.
- E.g., if the i th random number is used to generate a service time at work station 2 for the 5 th arrival in model 1 , the i th random number should be used for the very same purpose in model 2.
- It is never enough to simply use the same seed for the random-number generator(s):
- The random numbers must be synchronized: each random number used in one model for some purpose should be used for the same purpose in the other model.
- E.g., if the i th random number is used to generate a service time at work station 2 for the 5 th arrival in model 1 , the i th random number should be used for the very same purpose in model 2.
- The CRN idea is also used when we validate simulation model via input-output transformation, where we prefer to compare the model and actual system under the same historical input, rather than generate the input from input model.

(1) Introduction

2 Comparison of Two Designs

- Significant Difference
- Independent Sampling
- Common Random Numbers
(3) Comparison of Multiple Designs
- Bechhofer's Procedure
- Paulson's Procedure
- Ranking and Selection Review
- Multi-Arm Bandit Problem

Comparison of Multiple Designs

- Suppose there are $k>2$ system designs in total.
- The interested mean performance of design i is θ_{i} (unknown).

Comparison of Multiple Designs

- Suppose there are $k>2$ system designs in total.
- The interested mean performance of design i is θ_{i} (unknown).
- Some possible goals:
(1) Estimation of each parameter θ_{i}.
(2) Comparison of each θ_{i} to a control, say, θ_{1} (θ_{1} can represent the mean performance of an existing system).
(3) All pairwise comparisons.
(4) Selection of the best θ_{i} (largest or smallest).

Comparison of Multiple Designs

- Suppose there are $k>2$ system designs in total.
- The interested mean performance of design i is θ_{i} (unknown).
- Some possible goals:
(1) Estimation of each parameter θ_{i}.
(2) Comparison of each θ_{i} to a control, say, θ_{1} (θ_{1} can represent the mean performance of an existing system).
(3) All pairwise comparisons.
(4) Selection of the best θ_{i} (largest or smallest).
- The first three can be achieved by simultaneous construction of confidence intervals, whereas the last by some selection approaches.

Comparison of Multiple Designs

- Suppose there are $k>2$ system designs in total.
- The interested mean performance of design i is θ_{i} (unknown).
- Some possible goals:
(1) Estimation of each parameter θ_{i}.
(2) Comparison of each θ_{i} to a control, say, θ_{1} (θ_{1} can represent the mean performance of an existing system).
(3) All pairwise comparisons.
(4) Selection of the best θ_{i} (largest or smallest).
- The first three can be achieved by simultaneous construction of confidence intervals, whereas the last by some selection approaches.
- From now on, without loss of generality, let's assume the best θ_{i} is the largest one.
- Assumption 1: For each design i with mean performance θ_{i}, the noisy output $Y_{r i} \sim \mathcal{N}\left(\theta_{i}, \sigma_{i}^{2}\right)$, for $r=1,2, \ldots$.
- Assumption 2: No CRN is used, i.e., $Y_{r i}$ is independent of $Y_{r j}$ for $i \neq j$.
- Assumption 3 (indifference-zone): The gap between the largest θ_{i} and the second largest θ_{i} is at least δ, a value known to us.
- Assumption 4 (known variance): σ_{i}^{2} is known, for $i=1, \ldots, k$.
- Assumption 1: For each design i with mean performance θ_{i}, the noisy output $Y_{r i} \sim \mathcal{N}\left(\theta_{i}, \sigma_{i}^{2}\right)$, for $r=1,2, \ldots$.
- Assumption 2: No CRN is used, i.e., $Y_{r i}$ is independent of $Y_{r j}$ for $i \neq j$.
- Assumption 3 (indifference-zone): The gap between the largest θ_{i} and the second largest θ_{i} is at least δ, a value known to us.
- Assumption 4 (known variance): σ_{i}^{2} is known, for $i=1, \ldots, k$.
- Bechhofer (1954) first developed a selection procedure, which can ensure the probability of correct selection (PCS):

$$
\begin{equation*}
\mathbb{P}\left\{\text { select the largest } \theta_{i}\right\} \geq 1-\alpha, \tag{7}
\end{equation*}
$$

under Assumptions 1-4, where α is a user specified value and $1-\alpha>1 / k$.

Comparison of Multiple Designs

- Bechhofer's Procedure
(1) Calculate a constant h, which satisfies

$$
\begin{equation*}
\mathbb{P}\left\{Z_{i} \leq h, i=1,2, \ldots, k-1\right\}=1-\alpha, \tag{8}
\end{equation*}
$$

where $\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$.
(2) For $i=1, \ldots, k$, let

$$
\begin{equation*}
n_{i}=\left\lceil\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right\rceil . \tag{9}
\end{equation*}
$$

(3) For $i=1, \ldots, k$, run n_{i} replications for design i and calculate

$$
\bar{Y}_{i}=\frac{1}{n_{i}} \sum_{r=1}^{n_{i}} Y_{r i} .
$$

(4) Select the design with the largest sample mean \bar{Y}_{i} as the best.

Comparison of Multiple Designs

Proof.
Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$\mathbb{P}\{$ select $k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\}$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbb{P}\{\text { select } k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}<\frac{-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\}
\end{aligned}
$$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbb{P}\{\text { select } k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}<\frac{-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\}
\end{aligned}
$$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$$
\begin{aligned}
& \mathbb{P}\{\text { select } k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}<\frac{-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
\geq & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} /\left(\frac{2 h^{2} \sigma_{k}^{2}}{\delta^{2}}\right)+\sigma_{i}^{2} /\left(\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right)}}, i=1, \ldots, k-1\right\} \quad \text { (due to (9)) }
\end{aligned}
$$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \mathbb{P}\{\text { select } k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}<\frac{-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
\geq & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} /\left(\frac{2 h^{2} \sigma_{k}^{2}}{\delta^{2}}\right)+\sigma_{i}^{2} /\left(\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right)}}, i=1, \ldots, k-1\right\} \quad \text { (due to (9)) } \tag{9}\\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\delta / h}, i=1, \ldots, k-1\right\}
\end{align*}
$$

Comparison of Multiple Designs

Proof.

Without loss of generality, assume $\theta_{k} \geq \theta_{k-1} \geq \cdots \geq \theta_{1}$. Then Assumption 3 says, $\theta_{k}-\theta_{k-1} \geq \delta$, which implies that

$$
\begin{equation*}
\theta_{k}-\theta_{i} \geq \delta, i=1, \ldots, k-1 \tag{10}
\end{equation*}
$$

$$
\begin{align*}
& \mathbb{P}\{\text { select } k\}=\mathbb{P}\left\{\bar{Y}_{i}-\bar{Y}_{k}<0, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}<\frac{-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1\right\} \\
\geq & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\sqrt{\sigma_{k}^{2} /\left(\frac{2 h^{2} \sigma_{k}^{2}}{\delta^{2}}\right)+\sigma_{i}^{2} /\left(\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right)}}, i=1, \ldots, k-1\right\} \quad \text { (due to (9)) } \\
= & \mathbb{P}\left\{Z_{i}<\frac{\theta_{k}-\theta_{i}}{\delta / h}, i=1, \ldots, k-1\right\} \\
\geq & \mathbb{P}\left\{Z_{i}<h, i=1, \ldots, k-1\right\} . \quad \text { (due to (10)) } \tag{11}
\end{align*}
$$

Comparison of Multiple Designs

Proof. (Cont'd)
Now we only need to check that $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Comparison of Multiple Designs

Proof. (Cont'd)
Now we only need to check that $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Recall that

$$
Z_{i}=\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1,
$$

and $\boldsymbol{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}\right)^{\top}$ is a k-variate normal random vector. So, \boldsymbol{Z}, as a linear combination of \boldsymbol{Y}, must be a $(k-1)$-variate normal random vector.

Comparison of Multiple Designs

Proof. (Cont'd)
Now we only need to check that $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Recall that

$$
Z_{i}=\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1,
$$

and $\boldsymbol{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}\right)^{\top}$ is a k-variate normal random vector. So, \boldsymbol{Z}, as a linear combination of \boldsymbol{Y}, must be a $(k-1)$-variate normal random vector.

Besides, $\operatorname{Var}\left(Z_{i}\right)=\frac{\operatorname{Var}\left(\bar{Y}_{i}-\bar{Y}_{k}\right)}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=\frac{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=1$.

Comparison of Multiple Designs

Proof. (Cont'd)

Now we only need to check that $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Recall that

$$
Z_{i}=\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1,
$$

and $\boldsymbol{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}\right)^{\top}$ is a k-variate normal random vector. So, \boldsymbol{Z}, as a linear combination of \boldsymbol{Y}, must be a $(k-1)$-variate normal random vector.

Besides, $\operatorname{Var}\left(Z_{i}\right)=\frac{\operatorname{Var}\left(\bar{Y}_{i}-\bar{Y}_{k}\right)}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=\frac{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=1$.
Moreover, since $n_{i}=\left\lceil\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right\rceil$ in (9), $\frac{\sigma_{i}^{2}}{n_{i}}=\frac{\delta^{2}}{2 h^{2}}$ approximately, $i=1, \ldots, k$.

Comparison of Multiple Designs

Proof. (Cont'd)

Now we only need to check that $Z=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Recall that

$$
Z_{i}=\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1,
$$

and $\boldsymbol{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}\right)^{\top}$ is a k-variate normal random vector. So, \boldsymbol{Z}, as a linear combination of \boldsymbol{Y}, must be a $(k-1)$-variate normal random vector.

Besides, $\operatorname{Var}\left(Z_{i}\right)=\frac{\operatorname{Var}\left(\bar{Y}_{i}-\bar{Y}_{k}\right)}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=\frac{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=1$.
Moreover, since $n_{i}=\left\lceil\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right\rceil$ in (9), $\frac{\sigma_{i}^{2}}{n_{i}}=\frac{\delta^{2}}{2 h^{2}}$ approximately, $i=1, \ldots, k$.
For $i \neq j, \operatorname{Cov}\left(Z_{i}, Z_{j}\right)=\operatorname{Cov}\left(\frac{\bar{Y}_{i}-\bar{Y}_{k}}{\delta / h}, \frac{\bar{Y}_{j}-\bar{Y}_{k}}{\delta / h}\right)=\frac{\operatorname{Cov}\left(\bar{Y}_{k}, \bar{Y}_{k}\right)}{\delta^{2} / h^{2}}=\frac{\sigma_{k}^{2} / n_{k}}{\delta^{2} / h^{2}}=\frac{1}{2}$.

Comparison of Multiple Designs

Proof. (Cont'd)

Now we only need to check that $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, \ldots, Z_{k-1}\right)^{\top}$ indeed has a multivariate normal distribution with means 0 , variances 1 , and common pairwise correlations $1 / 2$ (except for some rounding error).

Recall that

$$
Z_{i}=\frac{\bar{Y}_{i}-\bar{Y}_{k}-\left(\theta_{i}-\theta_{k}\right)}{\sqrt{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}}, i=1, \ldots, k-1
$$

and $\boldsymbol{Y}=\left(\bar{Y}_{1}, \bar{Y}_{2}, \ldots, \bar{Y}_{k}\right)^{\top}$ is a k-variate normal random vector. So, \boldsymbol{Z}, as a linear combination of \boldsymbol{Y}, must be a $(k-1)$-variate normal random vector.

Besides, $\operatorname{Var}\left(Z_{i}\right)=\frac{\operatorname{Var}\left(\bar{Y}_{i}-\bar{Y}_{k}\right)}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=\frac{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}{\sigma_{k}^{2} / n_{k}+\sigma_{i}^{2} / n_{i}}=1$.
Moreover, since $n_{i}=\left\lceil\frac{2 h^{2} \sigma_{i}^{2}}{\delta^{2}}\right\rceil$ in (9), $\frac{\sigma_{i}^{2}}{n_{i}}=\frac{\delta^{2}}{2 h^{2}}$ approximately, $i=1, \ldots, k$.
For $i \neq j, \operatorname{Cov}\left(Z_{i}, Z_{j}\right)=\operatorname{Cov}\left(\frac{\bar{Y}_{i}-\bar{Y}_{k}}{\delta / h}, \frac{\bar{Y}_{j}-\bar{Y}_{k}}{\delta / h}\right)=\frac{\operatorname{Cov}\left(\bar{Y}_{k}, \bar{Y}_{k}\right)}{\delta^{2} / h^{2}}=\frac{\sigma_{k}^{2} / n_{k}}{\delta^{2} / h^{2}}=\frac{1}{2}$.
Hence, by (8) and (11), $\mathbb{P}\{$ select $k\} \geq 1-\alpha$.

Comparison of Multiple Designs

- Assumption 3 (indifference-zone) can be relaxed by softening the selection target to probability of good selection (PGS):

$$
\mathbb{P}\left\{\mid \text { selected } \theta_{i}-\max _{1 \leq i \leq k} \theta_{i} \mid<\delta\right\} \geq 1-\alpha
$$

- Assumption 3 (indifference-zone) can be relaxed by softening the selection target to probability of good selection (PGS):

$$
\mathbb{P}\left\{\mid \text { selected } \theta_{i}-\max _{1 \leq i \leq k} \theta_{i} \mid<\delta\right\} \geq 1-\alpha
$$

- Rinott (1978) proposed a procedure which can still guarantee the PCS in (7) while relaxing Assumption 4 (known variance), i.e., allowing unknown variances.
- It requires an initial stage to estimate σ_{i}^{2} by sample variance.
- The proof is more complicated.
- Assumption 3 (indifference-zone) can be relaxed by softening the selection target to probability of good selection (PGS):

$$
\mathbb{P}\left\{\mid \text { selected } \theta_{i}-\max _{1 \leq i \leq k} \theta_{i} \mid<\delta\right\} \geq 1-\alpha
$$

- Rinott (1978) proposed a procedure which can still guarantee the PCS in (7) while relaxing Assumption 4 (known variance), i.e., allowing unknown variances.
- It requires an initial stage to estimate σ_{i}^{2} by sample variance.
- The proof is more complicated.
- Procedures like Bechhofer's or Rinott's are simple to implement, but the efficiency may be low.
- The designed sample size (or, replication number), n_{i}, may be larger than necessary (too conservative).

Comparison of Multiple Designs

- More sample efficient procedures should be in a sequential manner.
- Take observations sequentially, i.e., one at a time.
- Eliminate designs from continued sampling when it is statistically clear that they are inferior.
- Simulation for a problem with a single dominant alternative may terminate very quickly.
- More sample efficient procedures should be in a sequential manner.
- Take observations sequentially, i.e., one at a time.
- Eliminate designs from continued sampling when it is statistically clear that they are inferior.
- Simulation for a problem with a single dominant alternative may terminate very quickly.
- Paulson (1964) proposed fully sequential procedures, which can guarantee the PCS in (7), under Assumptions 1-3 and (a) common known variance or (b) common unknown variance.

Comparison of Multiple Designs

- Suppose $\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{k}^{2}=\sigma^{2}$ and σ^{2} is known (common known variance).
- Let $\bar{Y}_{i}(r)$ be the sample mean of the first r observations.

Comparison of Multiple Designs

- Suppose $\sigma_{1}^{2}=\sigma_{2}^{2}=\cdots=\sigma_{k}^{2}=\sigma^{2}$ and σ^{2} is known (common known variance).
- Let $\bar{Y}_{i}(r)$ be the sample mean of the first r observations.
- Paulson's Procedure
(1) Let $0<\lambda<\delta$ (a good choice is $\lambda=\delta / 2$), and

$$
a=\ln \left(\frac{k-1}{\alpha}\right) \frac{\sigma^{2}}{\delta-\lambda} .
$$

Let $I=\{1,2, \ldots, k\}$ and $r=0$.
(2) Let $r \leftarrow r+1$. Take one observation from each alternative in I and compute $\bar{Y}_{i}(r), \forall i \in I$.
(3) Let $I^{\text {old }}=I$ and

$$
I=\left\{\ell \in I^{\text {old }}: \bar{Y}_{\ell}(r) \geq \max _{i \in I^{\text {old }}} \bar{Y}_{i}(r)-\max \{0, a / r-\lambda\}\right\} .
$$

If $|I|>1$, then go to Step 2; otherwise, select the alternative left in I as the best.

Comparison of Multiple Designs

- Kim and Nelson (2001) proposed a fully sequential procedure $\mathcal{K N}$, which extends Paulson's procedure, by allowing unequal variances and CRN.
- Kim and Nelson (2001) proposed a fully sequential procedure $\mathcal{K} \mathcal{N}$, which extends Paulson's procedure, by allowing unequal variances and CRN.
- Commercial simulation software, Simio, implements the $\mathcal{K} \mathcal{N}$ procedure of Kim and Nelson (2001) as an Add-In, to help user to select the best scenario.

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Ranking and Selection (R\&S) problem was first introduced in the 1950s by the statistics community:
- rank all alternatives
- select a subset of alternatives
- select the best alternative (attract the most attention)

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Ranking and Selection (R\&S) problem was first introduced in the 1950s by the statistics community:
- rank all alternatives
- select a subset of alternatives
- select the best alternative (attract the most attention)
- Existing procedures for $\mathrm{R} \& S$ (selection of the best) problems:
- frequentist
- Bayesian

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Frequentist procedures typically aim to deliver the PCS or PGS; see Kim and Nelson (2006) for a review:
- two-stage procedures: Bechhofer (1954), Rinott (1978)
- sequential procedures: Paulson (1964), Kim and Nelson (2001), Hong (2006)

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Frequentist procedures typically aim to deliver the PCS or PGS; see Kim and Nelson (2006) for a review:
- two-stage procedures: Bechhofer (1954), Rinott (1978)
- sequential procedures: Paulson (1964), Kim and Nelson (2001), Hong (2006)
- Bayesian procedures often allocate samples to each alternative either to maximize the Bayesian posterior PCS or to minimize the expected opportunity cost; see Chen et al. (2015) for a review:
- optimal computing budget allocation: Chen et al. (2000), He et al. (2007)
- value of information: Chick and Inoue (2001), Chick et al. (2010)
- knowledge gradient: Frazier et al. (2008), Frazier et al. (2009)
- economics of selection procedures: Chick and Gans (2009), Chick and Frazier (2012)

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Emerging research problems that expend classical R\&S from different perspectives; see Hong et al. (2021) for a review:
- large-scale R\&S using parallel computing
- constrained R\&S
- multi-objective R\&S
- R\&S with input uncertainty
- R\&S with covariates

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Emerging research problems that expend classical R\&S from different perspectives; see Hong et al. (2021) for a review:
- large-scale R\&S using parallel computing
- constrained R\&S
- multi-objective R\&S
- R\&S with input uncertainty
- R\&S with covariates
- What if the number of candidate designs (feasible solutions) is huge, or countably infinite, or even uncountably infinite?

Comparison of Multiple Designs $>$ Ranking and Selection Review

- Emerging research problems that expend classical R\&S from different perspectives; see Hong et al. (2021) for a review:
- large-scale R\&S using parallel computing
- constrained R\&S
- multi-objective R\&S
- R\&S with input uncertainty
- R\&S with covariates
- What if the number of candidate designs (feasible solutions) is huge, or countably infinite, or even uncountably infinite?
- Simulation Optimization (or called Optimization via Simulation)

Comparison of Multiple Designs

- R\&S Problem vs Multi-Arm Bandit (MAB) Problem:

[^0]: \dagger The notation here is different from that in Lec 7; the second subscript indicates different system designs.

[^1]: \dagger The notation here is different from that in Lec 7; the second subscript indicates different system designs.

[^2]: ${ }^{\dagger}$ The notation here is different from that in Lec 7; the second subscript indicates different system designs.

