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Introduction

• We have learnt how to estimate the absolute performance of a
simulation model.

• We now discuss how to compare two or more simulation
models, i.e. to estimate their relative performance.

• Here, different simulation models may refer to different
designs, operation policies, etc., of a simulated system; in this
lecture we simply call them different (system) designs.

• It is one of the most important uses of simulation.
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Introduction

• Key Question: Are the observed differences due to
• the actual differences on the expected performance of system

designs?
• or the random errors in the simulation outputs?

• The comparison can be classified into two types:
• Two system designs: using confidence interval of the

difference.
• Multiple (more than two) system designs: selection of the best.
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Comparison of Two Designs

• Let θ1 and θ2 be the mean performance of the two system
designs in simulation.

• To compare θ1 and θ2, we simply construct the point and
interval estimates of θ1 − θ2

• Suppose we have the simulation output data from simulation
of two system designs.†

Replication
Sample
Mean

Sample
VarianceSystem 1 2 · · · Ri

1 Y11 Y21 · · · YR11 Ȳ1 S2
1

2 Y12 Y22 · · · YR22 Ȳ2 S2
2

• Point estimator of θ1 − θ2: Ȳ1 − Ȳ2.

• Approximate 1− α CI: Ȳ1 − Ȳ2 ± tv, 1−α/2 × s.e.(Ȳ1 − Ȳ2).

• s.e.(Ȳ1 − Ȳ2) is the estimator of standard error of Ȳ1 − Ȳ2; see
more details about this quantity and v later.

†
The notation here is different from that in Lec 7; the second subscript indicates different system designs.
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2

• Point estimator of θ1 − θ2: Ȳ1 − Ȳ2.
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• s.e.(Ȳ1 − Ȳ2) is the estimator of standard error of Ȳ1 − Ȳ2; see
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Comparison of Two Designs

• Case 1 – Strong evidence that θ1 < θ2:

ത𝑌1 − ത𝑌2 0

• Case 2 – Strong evidence that θ1 > θ2:ത𝑌1 − ത𝑌2

ത𝑌1 − ത𝑌2

ത𝑌1 − ത𝑌2

0

0

0
• Case 3 – No strong evidence that one is larger than the other:

ത𝑌1 − ത𝑌2

ത𝑌1 − ത𝑌2

ത𝑌1 − ത𝑌2

0

0

0

• It does not imply θ1 = θ2!
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Comparison of Two Designs

• The first two cases are conclusive.

• If in case 3, then we increase the number of replications R1

and/or R2, after which the CI would likely shift, and definitely
shrink in length.

• We will shrink the CI until case 1 or 2 is achieved, or the
confidence interval is so narrow, which suggests that we do
not need to separate them.
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Comparison of Two Designs I Significant Difference

• For the comparison of performance of two designs, there is an
important distinction between
• statistically significant difference (统计意义上的显著区别);
• practically significant difference (实际意义上的显著区别).

• Statistical significance answers the following questions:
• Is the observed difference Ȳ1 − Ȳ2 larger than its variability?
• Have we collected enough data to be confident that the

observed difference is real (not just by chance)?

• Practical significance answers the following question:
• Is the true difference |θ1 − θ2| large enough so it is worthwhile

to separate them?
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Comparison of Two Designs I Significant Difference

• Cases 1 and 2 imply a statistically significant difference, while
case 3 does not.

• In case 1, we may reach the conclusion that θ1 < θ2 and
decide that design 2 is better (suppose larger is better).

• However, if the actual difference |θ1 − θ2| is very small, then it
might not be worth the cost to replace design 1 with design 2.

• Confidence intervals do not answer the question of practical
significance directly.
• Instead, they bound, with probability 1− α, the true difference
θ1 − θ2 within the range Ȳ1 − Ȳ2 ± tv,1−α/2 × s.e.(Ȳ1 − Ȳ2).

• Whether a difference within these bounds is practically
significant depends on the particular problem.
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Comparison of Two Designs I Independent Sampling

• Independent sampling means that different random number
streams are used to simulate the two systems.
• All the observations of system 1 {Yr1 : r = 1, . . . ,R1} are

statistically independent of all the observations of system 2
{Yr2 : r = 1, . . . ,R2}.

• Suppose Var(Yr1) = σ21 and Var(Yr2) = σ22. Due to the
independence,

Var(Ȳ1 − Ȳ2) = Var(Ȳ1) + Var(Ȳ2) =
σ2
1

R1
+
σ2
2

R2
.

• Standard error of Ȳ1 − Ȳ2 is
√

σ2
1

R1
+

σ2
2

R2
.

• σ2i is estimated via sample variance

S2
i =

1

Ri − 1

Ri∑
r=1

(Yri − Ȳi)2.

• Standard error of Ȳ1 − Ȳ2 is estimated via

s.e.(Ȳ1 − Ȳ2) =
√

S2
1

R1
+

S2
2

R2
. (1)
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• Standard error of Ȳ1 − Ȳ2 is
√

σ2
1

R1
+

σ2
2

R2
.

• σ2i is estimated via sample variance

S2
i =

1

Ri − 1

Ri∑
r=1

(Yri − Ȳi)2.

• Standard error of Ȳ1 − Ȳ2 is estimated via

s.e.(Ȳ1 − Ȳ2) =
√

S2
1

R1
+

S2
2

R2
. (1)
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Comparison of Two Designs I Independent Sampling

• The 1− α CI is approximated by

Ȳ1 − Ȳ2 ± tv,1−α/2 × s.e.(Ȳ1 − Ȳ2). (2)

where s.e.(Ȳ1 − Ȳ2) is given in (1), and the degree of freedom
v is

v =
[S2

1/R1 + S2
2/R2]2

[S2
1/R1]2/(R1 − 1) + [S2

2/R2]2/(R2 − 1)
.

• The approximated CI (2) is called the Welch confidence
interval (Welch 1938) .

• Sometimes, people will round v to integer for convenience.
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Ȳ1 − Ȳ2 ± tv,1−α/2 × s.e.(Ȳ1 − Ȳ2). (2)
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Comparison of Two Designs I Independent Sampling

• If R1 = R2 = R, or we are willing to discard some
observations from the system design on which we actually
have more data, we can pair Yr1 with Yr2 to define
Zr = Yr1 − Yr2, for r = 1, . . . ,R.

• Point estimator of θ1 − θ2: Z̄ = 1
R

∑R
r=1 Zr = Ȳ1 − Ȳ2.

Var(Z̄) =
Var(Zr)

R
=

Var(Yr1 − Yr2)

R
=
σ2
1 + σ2

2

R

= Var(Ȳ1 − Ȳ2) = Var(Ȳ1) + Var(Ȳ2) =
σ2
1 + σ2

2

R
.

(3)

• To estimate Var(Zr), instead of estimating σ21 and σ22
separately, we can directly use

S2 =
1

R− 1

R∑
r=1

(Zr − Z̄)2. (4)

• Approximate 1− α CI:

Z̄ ± tR−1,1−α/2
S√
R

. (5)
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Var(Z̄) =
Var(Zr)

R
=

Var(Yr1 − Yr2)

R
=
σ2
1 + σ2

2

R
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σ2
1 + σ2

2

R
.

(3)

• To estimate Var(Zr), instead of estimating σ21 and σ22
separately, we can directly use

S2 =
1

R− 1

R∑
r=1

(Zr − Z̄)2. (4)

• Approximate 1− α CI:

Z̄ ± tR−1,1−α/2
S√
R

. (5)

SHEN Haihui MEM6804 Modeling and Simulation, Lec 9 Spring 2021 (full-time) 13 / 29

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Comparison of Two Designs I Independent Sampling

• If R1 = R2 = R, or we are willing to discard some
observations from the system design on which we actually
have more data, we can pair Yr1 with Yr2 to define
Zr = Yr1 − Yr2, for r = 1, . . . ,R.

• Point estimator of θ1 − θ2: Z̄ = 1
R

∑R
r=1 Zr = Ȳ1 − Ȳ2.
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Comparison of Two Designs I Common Random Numbers

• Common Random Numbers (CRN, also known as correlated
sampling): For each replication, the same random numbers
are used to simulate both systems.
• For each replication r, the two estimates, Yr1 and Yr2, are

correlated.
• In this case, R1 and R2 must be equal, say, R1 = R2 = R.

• The purpose of using CRN is to induce a positive correlation
between Yr1 and Yr2 for each r and thus to achieve a variance
reduction in the point estimator of θ1 − θ2, Z̄.

Var(Z̄) =
Var(Yr1 − Yr2)

R
=
σ2
1 + σ2

2 − 2ρ12σ1σ2
R

. (6)

• Var(Z̄) in (6) is smaller than that in (3) =⇒ higher precision
of point estimator.

• CI is still computed via (4) and (5), but the width will be
smaller =⇒ higher precision.
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Comparison of Two Designs I Common Random Numbers

• It is never enough to simply use the same seed for the
random-number generator(s):

• The random numbers must be synchronized: each random
number used in one model for some purpose should be used for
the same purpose in the other model.

• E.g., if the ith random number is used to generate a service
time at work station 2 for the 5th arrival in model 1, the ith
random number should be used for the very same purpose in
model 2.

• The CRN idea is also used when we validate simulation model
via input-output transformation, where we prefer to compare
the model and actual system under the same historical input,
rather than generate the input from input model.
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1 Introduction

2 Comparison of Two Designs
I Significant Difference
I Independent Sampling
I Common Random Numbers

3 Comparison of Multiple Designs
I Bechhofer’s Procedure
I Paulson’s Procedure
I Ranking and Selection Review
I Multi-Arm Bandit Problem
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Comparison of Multiple Designs

• Suppose there are k > 2 system designs in total.

• The interested mean performance of design i is θi (unknown).

• Some possible goals:
1 Estimation of each parameter θi.
2 Comparison of each θi to a control, say, θ1 (θ1 can represent

the mean performance of an existing system).
3 All pairwise comparisons.
4 Selection of the best θi (largest or smallest).

• The first three can be achieved by simultaneous construction
of confidence intervals, whereas the last by some selection
approaches.

• From now on, without loss of generality, let’s assume the best
θi is the largest one.
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Comparison of Multiple Designs I Bechhofer’s Procedure

• Assumption 1: For each design i with mean performance θi,
the noisy output Yri ∼ N (θi,σ

2
i ), for r = 1, 2, . . ..

• Assumption 2: No CRN is used, i.e., Yri is independent of Yrj
for i 6= j.

• Assumption 3 (indifference-zone): The gap between the
largest θi and the second largest θi is at least δ, a value
known to us.

• Assumption 4 (known variance): σ2i is known, for i = 1, . . . , k.

• Bechhofer (1954) first developed a selection procedure, which
can ensure the probability of correct selection (PCS):

P{select the largest θi} ≥ 1− α, (7)

under Assumptions 1-4, where α is a user specified value and
1− α > 1/k.
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Comparison of Multiple Designs I Bechhofer’s Procedure

• Bechhofer’s Procedure
1 Calculate a constant h, which satisfies

P{Zi ≤ h, i = 1, 2, . . . , k − 1} = 1− α, (8)

where (Z1,Z2, . . . ,Zk−1)ᵀ has a multivariate normal
distribution with means 0, variances 1, and common pairwise
correlations 1/2.

2 For i = 1, . . . , k, let

ni =

⌈
2h2σ2

i

δ2

⌉
. (9)

3 For i = 1, . . . , k, run ni replications for design i and calculate

Ȳi =
1

ni

ni∑
r=1

Yri.

4 Select the design with the largest sample mean Ȳi as the best.
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Comparison of Multiple Designs I Bechhofer’s Procedure

Proof.

Without loss of generality, assume θk ≥ θk−1 ≥ · · · ≥ θ1. Then Assumption 3
says, θk − θk−1 ≥ δ, which implies that

θk − θi ≥ δ, i = 1, . . . , k − 1. (10)

P{select k} = P{Ȳi − Ȳk < 0, i = 1, . . . , k − 1}

=P

{
Ȳi − Ȳk − (θi − θk)√

σ2
k/nk + σ2

i /ni
<

−(θi − θk)√
σ2
k/nk + σ2

i /ni
, i = 1, . . . , k − 1

}

=P

{
Zi <

θk − θi√
σ2
k/nk + σ2

i /ni
, i = 1, . . . , k − 1

}

≥P

Zi < θk − θi√
σ2
k/
( 2h2σ2

k
δ2

)
+ σ2

i /(
2h2σ2

i
δ2

)

, i = 1, . . . , k − 1

 (due to (9))

=P
{
Zi <

θk − θi
δ/h

, i = 1, . . . , k − 1

}
≥P {Zi < h, i = 1, . . . , k − 1} . (due to (10))

(11)

SHEN Haihui MEM6804 Modeling and Simulation, Lec 9 Spring 2021 (full-time) 20 / 29

https://shenhaihui.github.io/teaching/mem6804f/CC_BY-SA_4.0_License.html
https://creativecommons.org/licenses/by-sa/4.0/
https://shenhaihui.github.io/


Comparison of Multiple Designs I Bechhofer’s Procedure

Proof.

Without loss of generality, assume θk ≥ θk−1 ≥ · · · ≥ θ1. Then Assumption 3
says, θk − θk−1 ≥ δ, which implies that

θk − θi ≥ δ, i = 1, . . . , k − 1. (10)
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Comparison of Multiple Designs I Bechhofer’s Procedure

Proof. (Cont’d)

Now we only need to check that Z = (Z1,Z2, . . . ,Zk−1)
ᵀ

indeed has a
multivariate normal distribution with means 0, variances 1, and common
pairwise correlations 1/2 (except for some rounding error).

Recall that

Zi =
Ȳi − Ȳk − (θi − θk)√

σ2
k/nk + σ2

i /ni
, i = 1, . . . , k − 1,

and Y = (Ȳ1, Ȳ2, . . . , Ȳk)
ᵀ

is a k-variate normal random vector. So, Z, as a
linear combination of Y , must be a (k − 1)-variate normal random vector.

Besides, Var(Zi) = Var(Ȳi−Ȳk)

σ2
k
/nk+σ2

i /ni
=

σ2
k/nk+σ2

i /ni

σ2
k
/nk+σ2

i /ni
= 1.

Moreover, since ni =
⌈

2h2σ2
i

δ2

⌉
in (9),

σ2
i
ni

= δ2

2h2 approximately, i = 1, . . . , k.

For i 6= j, Cov(Zi,Zj) = Cov

(
Ȳi−Ȳk
δ/h

,
Ȳj−Ȳk

δ/h

)
= Cov(Ȳk , Ȳk)

δ2/h2 =
σ2
k/nk

δ2/h2 = 1
2

.

Hence, by (8) and (11), P{select k} ≥ 1− α. �
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Comparison of Multiple Designs I Bechhofer’s Procedure

• Assumption 3 (indifference-zone) can be relaxed by softening
the selection target to probability of good selection (PGS):

P
{∣∣∣selected θi − max

1≤i≤k
θi

∣∣∣ < δ
}
≥ 1− α.

• Rinott (1978) proposed a procedure which can still guarantee
the PCS in (7) while relaxing Assumption 4 (known variance),
i.e., allowing unknown variances.
• It requires an initial stage to estimate σ2

i by sample variance.
• The proof is more complicated.

• Procedures like Bechhofer’s or Rinott’s are simple to
implement, but the efficiency may be low.
• The designed sample size (or, replication number), ni, may be

larger than necessary (too conservative).
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Comparison of Multiple Designs I Paulson’s Procedure

• More sample efficient procedures should be in a sequential
manner.
• Take observations sequentially, i.e., one at a time.
• Eliminate designs from continued sampling when it is

statistically clear that they are inferior.
• Simulation for a problem with a single dominant alternative

may terminate very quickly.

• Paulson (1964) proposed fully sequential procedures, which
can guarantee the PCS in (7), under Assumptions 1-3 and (a)
common known variance or (b) common unknown variance.
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Comparison of Multiple Designs I Paulson’s Procedure

• Suppose σ21 = σ22 = · · · = σ2k = σ2 and σ2 is known (common
known variance).

• Let Ȳi(r) be the sample mean of the first r observations.

• Paulson’s Procedure
1 Let 0 < λ < δ (a good choice is λ = δ/2), and

a = ln

(
k − 1

α

)
σ2

δ − λ .

Let I = {1, 2, . . . , k} and r = 0.

2 Let r ← r + 1. Take one observation from each alternative in
I and compute Ȳi(r), ∀i ∈ I.

3 Let Iold = I and

I =

{
` ∈ Iold : Ȳ`(r) ≥ max

i∈Iold
Ȳi(r)−max{0, a/r − λ}

}
.

If |I| > 1, then go to Step 2; otherwise, select the alternative
left in I as the best.
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Comparison of Multiple Designs I Paulson’s Procedure

• Kim and Nelson (2001) proposed a fully sequential procedure
KN , which extends Paulson’s procedure, by allowing unequal
variances and CRN.

• Commercial simulation software, Simio, implements the KN
procedure of Kim and Nelson (2001) as an Add-In, to help user
to select the best scenario.
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Comparison of Multiple Designs I Ranking and Selection Review

• Ranking and Selection (R&S) problem was first introduced in
the 1950s by the statistics community:
• rank all alternatives
• select a subset of alternatives
• select the best alternative (attract the most attention)

• Existing procedures for R&S (selection of the best) problems:
• frequentist
• Bayesian
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Comparison of Multiple Designs I Ranking and Selection Review

• Frequentist procedures typically aim to deliver the PCS or
PGS; see Kim and Nelson (2006) for a review:
• two-stage procedures: Bechhofer (1954) , Rinott (1978)
• sequential procedures: Paulson (1964) , Kim and Nelson (2001) ,

Hong (2006)

• Bayesian procedures often allocate samples to each alternative
either to maximize the Bayesian posterior PCS or to minimize
the expected opportunity cost; see Chen et al. (2015) for a
review:
• optimal computing budget allocation: Chen et al. (2000) ,

He et al. (2007)
• value of information: Chick and Inoue (2001) ,

Chick et al. (2010)
• knowledge gradient: Frazier et al. (2008) , Frazier et al. (2009)
• economics of selection procedures: Chick and Gans (2009) ,

Chick and Frazier (2012)
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Comparison of Multiple Designs I Ranking and Selection Review

• Emerging research problems that expend classical R&S from
different perspectives; see Hong et al. (2021) for a review:
• large-scale R&S using parallel computing
• constrained R&S
• multi-objective R&S
• R&S with input uncertainty
• R&S with covariates

• What if the number of candidate designs (feasible solutions) is
huge, or countably infinite, or even uncountably infinite?
• Simulation Optimization (or called Optimization via

Simulation)
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Comparison of Multiple Designs I Multi-Arm Bandit Problem

• R&S Problem vs Multi-Arm Bandit (MAB) Problem:
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